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Despite the prevalent belief about a strong anisotropy of the magnetic exchange in rare-earth compounds, Cs3-
Yb2Cl9 and Cs3Yb2Br9 crystals are found to exhibit fully isotropic exchange coupling between Yb3+ ions. In this
article, we attempt to reveal the physical origin of this surprising feature. Our theoretical consideration is based on
a model of the kinetic exchange between two octahedrally coordinated Yb3+ ions in their ground Kramers doublet
states. It is shown that a mechanism of kinetic exchange involving intercenter electron hopping between 4f orbitals
of two Yb3+ ions in a face-shared binuclear unit results in fully isotropic antiferromagnetic exchange coupling, while
a mechanism in which the electron jumps from the 4f to the 5d orbital gives rise to a highly anisotropic interaction.
Comparison of these results with the experimental data along with qualitative arguments regarding the relative
significance of these two contributions to the overall exchange indicate that, in face-shared Yb3+ binuclear units,
the 4f T 4f mechanism plays a dominant role.

1. Introduction

Exchange-coupled systems comprising ions with un-
quenched orbital angular momenta seem to be quite attractive
in magnetochemistry because these compounds are the
paradigm of strong magnetic anisotropy.1-7 Most rare-earth-
based compounds exhibit a very strong magnetic an-
isotropy,8-12 that manifests itself in both local factors

(anisotropy of theg tensor) and in the anisotropy of the
orbitally dependent exchange.

A large amount of experimental data13-15 in conjunction
with a clear physical concept of the role of the orbital angular
momentum created a firm conviction that strong exchange
anisotropy is an inherent and common property of all rare-
earth systems with unquenched orbital angular momenta.
However, the rare-earth compounds Cs3Yb2Cl9 and Cs3Yb2-
Br9, which are formed by pairs of YbCl6 octahedra sharing
a face, seem to be an exception to this general rule. In fact,
Güdel et al.16 experimentally showed that the exchange
interaction between Yb3+ ions in these compounds seems to
be isotropic and can be described by a Heisenberg-type
Hamiltonian acting within the lowest Kramers doublet of
Yb3+ ions. This surprising result generated at least two
theoretical questions: (1) Is this unexpected isotropy of the
exchange coupling a consequence of some accidental com-
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pensation of the contributions coming from the microscopic
parameters of the system (electron-transfer integrals con-
tributing to the kinetic exchange, intra-atomic Coulomb
energies, etc.), or there is a definite underlying physical
reason giving rise to the observed isotropic exchange? (2)
If such a physical reason does exist, of what does this reason
consist and under what physical conditions does the exchange
appears to be isotropic (structure, exchange mechanisms,
etc.)? The aim of the present study is to shed light on these
questions on the basis of the microscopic theory of magnetic
exchange.

2. Ground State of the Yb3+ Pair

In Cs3Yb2Cl9 and Cs3Yb2Br9 crystals, the octahedrally
coordinated Yb3+ ions form face-shared dimers of ap-
proximately D3h symmetry.17 Because the local trigonal
crystal field is unable to produce an appreciable anisotropy
of theg tensor,16 we will exclude this field from consideration
and focus on the kinetic exchange problem in the idealized
system built from two perfect octahedral Yb3+ sites (Figure
1). The cubic crystal field splits the2F7/2 ground term of
Yb3+ ions into two Kramers doublets,Γ6 and Γ7, and a
quadruplet,Γ8, in such a way that the Kramers doubletΓ6

proves to be the ground state (Figure 2). The energy gap
between the ground and excited states was shown to exceed
considerably the exchange interaction (J ) -2.87 cm-1),16

so we will focus on the Kramers doubletΓ6. Considering
symmetry-adapted combinations of the spherical harmonics
Y4m(ϑæ) one can build the wave functions of the Kramers
doublet from the2F7/2 manifold. We will use an alternative
approach that is more appropriate for the problem of
magnetic exchange. Let us note that the 4f atomic level is
split in the cubic crystal field into two triplets, T1 and T2,(17) Meyer, G.; Scho¨nemund, A.Mater. Res. Bull. 1980, 15, 89.

Figure 1. Schematic structure of Cs3Yb2Cl9 and Cs3Yb2Br9 compounds: (a) tetragonal coordinate frames, and (b) local trigonal frames.

Figure 2. Cubic crystal field splitting of the ground term of the Yb3+

ion.
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and a singlet, A2. Simple group-theoretical arguments show
thatΓ6 arises from the T1 orbital triplet only when the latter
is coupled to the spin state withS ) 1/2 (Γ6). This means
that only T1 states contribute to the ground Kramers doublets.
To make the calculations simpler and more transparent, we
will consider the Γ6 state that originates from the hole
configuration f1, instead of that coming from the electronic
configuration f13. The validity of this hole formalism will
be justified later.

Henceforth, we will not consider very weak component
of the trigonal field, but we will use the trigonal one-electron
4f basis of T1 type described in Appendix I. This basis is
defined with respect to the local trigonal frames shown in
Figure 1b together with the corresponding cubic ones (Figure
1a). Because only theΓ6 state is present in the f1 pattern,
the wave functions for this doublet can be found using the
Clebsch-Gordan expansion for theO group.18 This leads
to the following expressions for the wave functions in terms
of the complex trigonal T1 states

where|v〉 and |V〉 are “spin-up” and “spin-down” functions,
respectively; we use the shorthand notationsfT1ao ≡ fao and
fT1a(1 ≡ fa( for the complex trigonal basis. The wave functions
of the Kramers doublet satisfy the same Hermitian conjuga-
tion relation as the spin-1/2 functions|v〉 and |V〉, that is

The four states describing the ground (Γ6)A X (Γ6)B

manifold of the pair are

where we use the conventional shorthand notations of the
spin-orbitals fa+|v〉 ≡ fa+, fa+|V〉 ≡ fha+, etc., and|‚‚| is the
symbol of Slater determinant.

3. Effective Exchange Hamiltonian for a Kramers
Doublet Pair

Kinetic exchange appears as a second-order contribution
to intercenter one-electron (one-hole) transfer.19,20 The ef-
fective exchange operator acting within the space of the direct
product of the one-center Kramers doublet functions (the
states|gk〉) is defined by the matrixĤeff with the complex
matrix elements

where h is the one-electron part of the Hamiltonian that
includes the kinetic energy and the attraction between the
electrons and alien nuclei. The sum in eq 4 runs over the
excited charge-transfer (CT) states in which one electron is
transferred from site A (B) to site B (A).

An equivalent way to express this exchange interaction
between the two lowest-lying Kramers doublets consists of
using an effective pseudo-spin-1/2 Hamiltonian, which in the
case of axial symmetry can be expressed as

To calculate the effective exchange parametersJ| and J⊥,
one has to compare this matrix with the matrix elements
given by eq 4. In general, in eq 4, the matrix is not traceless,
but by extracting the unit part, one can obtain the traceless
matrix

whereI is a 4× 4 unit matrix. By comparing the traceless
part of the matrix in eq 6 with the matrix in eq 5, one obtains
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the following relationships between the parameters of the
effective pseudo-spin-1/2 Hamiltonian and the second-order
matrix elements of the kinetic exchange

Because the matrix elements〈gk′|h|en〉 connecting the
ground state with the excited states are proportional to the
one-hole intercenter matrix elements (transfer integrals), the
nonzero matrix elementsw1, w2, and w3 (and thus, the
effective exchange parameters) represent the bilinear forms
of the transfer integrals. Our aim is to find explicit expres-
sions of the second-order matrix elements in terms of the
transfer integrals allowed by the trigonal overall symmetry
of the system. To do so, one must specify the types of the
electron-transfer processes that determine the different mech-
anisms of kinetic exchange. In the next section, we will
derive the effective pseudo-spin-1/2 Hamiltonian related to
two main mechanisms of the kinetic superexchange.

4. Kinetic Exchange Due to 4fT 4f Transfer

The first exchange mechanism involves the charge-transfer
states in which one hole is transferred from the 4f shell of
one ion to the 4f shell of another. Because the 4f2 CT
configurations have a complicated energy pattern, some
assumptions should be made. We will not take into account
the multiplet structure of the CT states, thus neglecting both
the exchange interaction between two electrons (holes) of
the CT f2 configuration and the spin-orbit and crystal field
splitting of the CT states. We thus assume that all CT states
have the same energyUff that can be roughly estimated as
the spherical partF0(4f,4f) of the Coulomb interaction
between two 4f electrons (or holes). Because no intracenter
exchange is assumed between 4f electrons in the CT states,
only the transfer processes between the t1 orbitals involved
in the ground Kramers doublets should be considered. The
remaining transfer processes (for example, those connecting
t1 and t2 orbitals) result only in a shift of the energy pattern
as a whole, so we will not consider them. The transfer
integrals of the 4fT 4f type, allowed by the trigonal
symmetry, that contribute to the exchange splitting are the
following

The parameterta can be associated with the through-space
direct σ-σ interaction, whereas the interaction with the
participation of thete transfer is an indirect one that occurs
through the Cl ligands. Similar transfer processes were
previously mentioned both for trigonal exchange-coupled and
mixed-valence dimers of transition metal ions.2,21,22

The nonzero matrix elements connecting the states|gi〉
belonging to the ground manifold with the excited states are
given in the Appendix II. By substituting these results into

eq 4, we find

Finally, by combining these results with eq 7, we obtain that
J| is equal toJ⊥ with the following expression for these
exchange components

Therefore, we arrive at the important conclusion that the
kinetic exchange mechanism associated with 4fT 4f transfer
processes gives rise to the following isotropic Heisenberg
interaction between two pseudo-spins-1/2

BecauseJ < 0, the exchange interaction in this case proves
to be antiferromagnetic.

5. Kinetic Exchange Due to 4fT 5d Transfer

The second mechanism of kinetic exchange proposed by
Goodenough23 involves electron transfer from the 4f orbital
of one rare-earth ion to the 5d orbital of another. Now, along
with the 4f orbitals of T1 type, we have to use the 5d orbitals
that are transformed as the bases of T2 and E representations
in theO group. The real and complex trigonal forms of these
orbitals are given in Appendix III.

As distinguished from the mechanism considered above.
this mechanism demands the inclusion of the intracenter
exchange interaction between 4f and 5d electrons in the CT
states. Here we will use a simplified model proposed in ref
24. Within this model, the intraionic Coulomb repulsion
between 4f and 5d electrons is approximated by one
parameterUfd that is assumed to include the spherical term
F0(4f,5d) and the energy difference∆fd between the 4f and
5d orbitals (this difference approximated by the energy gap
between the centers of gravity of the levels originating from
4f 125d1 and 4f13 configurations is found to be∼13.5 eV25).
The intracenter exchange is approximated by the single
exchange integralJfd ≈ G1(4f,5d). For free Yb3+ ions, this
value is∼1.5 eV.25 This exchange discriminates the energies
of spin triplets and spin singlets; the corresponding energy
gap is equal toJfd. In addition, the cubic crystal field splitting
of the 5d levels, which is on the order of 10Dq ≈ 2-3 eV,
is taken into account. At the same time, the spin-orbit
splitting in the CT states is neglected, as is the cubic crystal
field splitting of the 4f level (∼100 cm-1).

Strictly speaking, within the hole formalism, one should
consider the ground-state configuration (4f15d10)A - (4f1-
5d10)B (g) and the two CT excited-state configurations (4f1-
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Vanquickenborne, L. G.Chem. ReV. 2000, 100, 787.
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5d9)A - (4f25d10)B and (4f25d10)A - (4f15d9)B (e). It is
possible to show, however, that, in the framework of the
described simple model, the results will not be affected if,
instead of these configurations, one considers simpler ones,
namely, (4f1)A - (4f1)B (g′) and (4f15d1)A - (4f2)B, (4f2)A -
(4f15d1)B (e′). The detailed proof of this statement is given
in Appendix IV.

The following transfer integrals of 4fT 5d type are
allowed by the trigonal symmetry

The wave functions of the CT states that are connected to
the ground manifold by these transfer processes and the
corresponding excitation energies are reported in Table 1.
The nonzero matrix elements connecting the ground manifold
with these CT states of the (4f15d1)A configuration are given
in Appendix V. Using these results, one can calculate the
complex matrix elements in eq 4. Multiplying the obtained
matrix elements by the factor 2 to take into account the CT
states belonging to the (4f15d1)B configuration, we obtain

Then, applying eq 7, we find

BecauseUfd significantly exceedsJfd, one can write ap-
proximately

Therefore, as distinguished from the 4fT 4f mechanism,
the exchange interaction due to electron jumps of 4fT 5d
type proves to be anisotropic.

6. Discussion

Before proceeding to an analysis of the results, some
general remarks concerning the origin of the anisotropy are
to be made. It is worthwhile to distinguish two physical
reasons for the magnetic anisotropy in an exchange-coupled
system. The first comes from the one-center interactions
(low-symmetry crystal field combined with the spin-orbit
interaction) and can be referred to as a single-ion (or local)
anisotropy. This anisotropy manifests itself in the mono-
nuclear magnetic moiety as well as in the entire exchange-
coupled system. The second kind of anisotropy arises from
the orbitally dependent exchange interaction and appears
even when the mononuclear fragments involved in the
orbitally dependent exchange are magnetically isotropic. This
division has, however, true sense when we are dealing with
the full terms of the interacting ions (sΓ terms of transition
metals orsj multiplets of rare earths). When the exchange,
even isotropic, is projected onto the restricted space of the
low-lying Kramers doublets of the interacting ions, the
single-ion anisotropy (the anisotropy of theg factor)
manifests itself in the effective pseudo-spin-1/2 Hamiltonian
acting within the Kramers doublet space.8,9,26-31

In fact, the interaction between effective spins proves to
be of the form31

The effective exchange parameters in eq 16 are given by
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E.; Büttner, H.; Kearly, C.; Zolliker, M.Chem. Phys. Lett. 1998, 289,
224.

(29) Andres, H.; Clemente-Juan, J. M.; Aebersold, M.; Gu¨del, H. U.;
Coronado, E.; Bu¨ttner, H.; Kearly, C.; Melero, J.; Burriel, R.J. Am.
Chem. Soc. 1999, 121, 10028.

(30) Andres, H.; Clemente-Juan, J. M.; Basler, R.; Aebersold, M.; Gu¨del,
H. U.; Borrás-Almenar, J. J.; Gaita, A.; Coronado, E.; Bu¨ttner, H.;
Janssen, S.Inorg. Chem. 2001, 40, 1943.

(31) Abragam, A.; Bleaney, B.Electron Paramagnetic Resonance of
Transition Ions; Clarendon Press: Oxford, U.K., 1970.

Table 1. Wave Functions of CT States Relevant to the 4ff 5d
Kinetic Exchange Mechanism and the Corresponding Excitation
Energiesa
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wheregj is a Lande factor for the state with the total angular
momentumj andJ is the exchange integral describing the
isotropic interaction between true spins. Therefore, given the
anisotropy ofg factor, we arrive at the anisotropic effective
pseudo-spin-1/2 Hamiltonian.

At the same time, in most cases involving ions with
unquenched orbital angular momenta, the interaction between
the true spins is highly anisotropic and should be described
by a Hamiltonian that includes both spin and orbital
operators.1-7 This anisotropy also manifests itself in the
effective pseudo-spin-1/2 Hamiltonian, but as distinguished
from the single-ion anisotropy, it comes directly from the
interaction between the magnetic ions. For this reason, this
kind of anisotropy can be referred to as genuine exchange
anisotropy. Note that this anisotropy remains even when the
rare-earth ions occupy perfect octahedral sites, in which case
no anisotropy coming from the single ions can exist. One
can expect that, in general, the two kinds of anisotropy
coexist and their interplay results in the highly anisotropic
interaction between the ions in the ground Kramers doublet
states.

Proceeding from this general consideration to an analysis
of the data for Cs3Yb2Cl9 and Cs3Yb2Br9 crystals, one can
say that the local anisotropy in these systems is not very
pronounced in the ground Kramers doublets. In fact, the
principal values of theg tensor for the Kramers doublet state
calculated from crystal field wave functions areg| ) 2.63
andg⊥ ) 2.70.16 These values are quite close to the valueg
) 2.66 calculated forΓ6 in Oh, so that, according to eq 17,
the local factors cannot significantly contribute to the overall
anisotropy of the pseudo-spin-1/2 Hamiltonian. Despite this
fact, the isotropic form of the pseudo-spin-1/2 Hamiltonian
discovered in ref 16 was still very surprising because a
significant exchange anisotropy arising from the orbital
degeneracy was found in numerous systems including the
isostructural compounds Cs3Ho2Br9

15 and YbCrBr9.12 To
elucidate the reason the genuine exchange anisotropy also
vanishes in Cs3Yb2Cl9 and Cs3Yb2Br9, we have expressed
in this work the parameters of the effective Hamiltonian
operating within the ground (Γ6)A X (Γ6)B manifold through
the microscopic parameters involved in the orbitally depend-
ent kinetic superexchange (the set of nonzero transfer
integrals). We have considered two main mechanisms for
kinetic exchange. The first mechanism is related to intercenter
hole transfer between the 4f orbitals, and the other involves
transfer of the hole from the 5d orbital of one magnetic ion
to the 4f orbital of the second ion. The results obtained can
be summarized as follows:

1. The calculation of the effective exchange parameters
within the 4fT 4f mechanism demonstrated that, regardless
of the relative values of the two nonvanishing transfer
integralsta and te, the exchange interaction in the Kramers
doublet pair is isotropic and at the same time antiferromag-
netic, eqs 15. This result is compatible with main experi-
mental observations,16 namely, the isotropy of the exchange
and its antiferromagnetic character.

To determine the extent to which this result is related to
the trigonal symmetry of the Yb3+ pair, we have performed
a model calculation for a corner-shared Yb3+ dimer of D4h

symmetry. In this case, the following two transfer parameters
t′a and t′e connecting the t1 orbitals are allowed by the
symmetry of the pair

where the f orbitalsfT1γ ) fz3, fT1R ) fx3, andfT1â ) fy3 form
the real cubic T1 basis (localz axes are directed along the
C4 axis of the pair). InD4h symmetryfT1γ is of A1 type, and
fT1R, fT1â form the E basis. Using the|gi〉 functions defined
in Appendix VI and following the same procedure as in the
case ofD3h symmetry, we arrive at eq 10 for the exchange
parameters in whichta andte are substituted byt′a andt′e. In
this way, one can conclude that the 4fT 4f mechanism
results in isotropic exchange in bothD3h andD4h cases. This
means that the isotropy of the exchange is related to the
special structure of the ground Kramers doublet arising from
the 2F7/2 term of the Yb3+ ion rather than to the trigonal
symmetry of the pair or the simplifying assumptions of the
model. More definite conclusions about the role of the
symmetry in this phenomenon can be made by considering
the remaining high-symmetric case, namely, the edge-shared
bioctahedral cluster ofD2h symmetry. This work is under
way.

2. The 4f T 5d mechanism was shown to result in an
essentially anisotropic exchange interaction. BecauseJ| *
J⊥, the symmetry of the Hamiltonian is axial, and the degree
of anisotropy depends on the relative values of the different
kinds of transfer integrals. By inspecting eqs 14 and 15, one
can see that the only possibility for eliminating the anisotropy
within this mechanism is to setâe ) (âa andâ′e ) 0. In this
case, we obtain a Heisenberg-type Hamiltonian with the
exchange parameter

This parameter is obviously positive, thus corresponding to
a ferromagnetic interaction that is in contradiction to the
experimental observations. Further, the conditionâe ) (âa

looks unrealistic because the transfer integralâa corresponds
to a strong directσ-σ interaction in a face-shared geometry
whereasâe describes a relatively weak superexchange. The
limit âa . âe,â′e looks more realistic, but it leads to a highly
anisotropic interaction of the special form

Therefore, the 4fT 5d mechanism proves to be incompatible
with the experimentally observed isotropic interaction; hence,
the 4fT 4f mechanism should dominate in this system, and
the 4fT 5d mechanism should play a minor role. To support
this conclusion, one can invoke the following two indepen-
dent arguments that favor the 4fT 4f mechanism: (1) As

JR ) - 1
2
(gR/gj)

2(gj - 1)2 J, R ) x, y, z (17)

t′a ) 〈fT1γ
A |h|fT1γ

B 〉, t′e ) 〈fT1R
A |h|fT1R

B 〉 ) 〈fT1â
A |h|fT1â

B 〉 (18)

J ≈ âa
2Jfd

9(Ufd - 4Dq)2
(19)

J⊥ ) -J| )
âa

2Jfd

9(Ufd - 4Dq)
(20)
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was clearly demonstrated in ref 32, the 4fT 4f mechanism
dominates in the case of short metal-metal distances
between trivalent rare-earth ions, whereas the remaining
mechanisms with participation of 5d, 6s, and/or 6p orbitals
become more important at longer distances. (2) In trivalent
rare-earth ions, the energy gap∆fd between the 4f and 5d
orbitals [and hence the energyF0(4f,5d)+ ∆fd of CT states]
is high, so electron hopping to the 5d orbitals is constrained.
In the case under consideration, the intermetallic distances
are short (3.70 and 3.83, respectively16) as the Yb-Yb pairs
are sharing a face of the octahedron, and at the same time,
the 4f 5d group of states in Yb3+ are 13.5 eV higher in energy
than the levels arising from 4f2 configuration.25 It is worth
noting that∆fd rapidly increases across the lanthanide series22

(from 57812 cm-1 for Ce3+ to 109809 cm-1 for Ln3+). That
is why, among the trivalent lanthanides, Yb3+ provides the
most unfavorable conditions for 4fT 5d exchange. Of
course, more comprehensive study of the relative importance
of different mechanisms of superexchange should involve
the calculation of the microscopic parameters (hopping
integrals, charge-transfer energies, etc). The aim of this short
paper was only to demonstrate how different mechanisms
of exchange manifest themselves in the anisotropic properties
of the system and to investigate how the surprising isotropy
of the exchange in the Yb pairs could appear.
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Appendix I. Trigonal One-Electron 4f Basis of T1

Type

Because of the trigonal symmetry of the system, a
convenient choice of basis is that in whichC3 is a quantiza-
tion axis. We use here the definition of ref 18 for the trigonal
coordinate frame. This definition assumes that the trigonal
coordinates (X, Y, Z) and the cubic ones (x, y, z) are related
as

To satisfy this definition, the local trigonal coordinate
systems associated with sites A and B should be rotated with
respect to each other by the angleπ around theC3 axis as

shown in Figure 1. Under the above definition of the local
trigonal coordinates, the expressions for the one-electron 4f
basis of T1 type are given by

In eq I.2, the conventional short notation for the 4f functions
is used. For the sake of simplicity, the label of the center
(A, B) is omitted. One can easily show that the second two
functions in eq I.2 are transformed as theθ andε components
of E representation (θ ∝ X, ε ∝ Y) when the symmetry is
lowered to theC3V site symmetry of each metal site. In the
same way, the functionfT1a is of A2 symmetry in theC3V

group. Along with the real trigonal basis defined by eq I.2,
we will use the complex trigonal basis that is related to the
real one as follows

Within the concept ofT-P isomorphism, the statesfT1ao,
fT1a+1, andfT1a-1 correspond to the states|l ) 1, ml ) 0〉, |l )
1, ml ) 1〉, and |l ) 1, ml ) -1〉, respectively (l ) 1 is a
fictious orbital angular momentum).

Appendix II. Nonzero Matrix Elements Connecting the
Ground Manifold with the CT States of (4f2)A

Configuration

The set of CT states comprises all Slater determinants
describing the (t12)A and (t12)B configurations. At the same
time, only a few of these Slater determinants are connected
with the ground state by one-hole transfer, being thus relevant
to the kinetic exchange. The 10 nonzero matrix elements
connecting the ground manifold with the excited states of
(t12)A type are given by

The CT states of (t1
2)B type give the same contribution to

the kinetic exchange splitting.(32) Eremin, M. V.SoV. Phys.-Solid State1982, 24, 239.

x ) - 1

x6
X + 1

x2
Y + 1

x3
Z

y ) - 1

x6
X - 1

x2
Y + 1

x3
Z (I.1)

z ) 2

x6
X + 1

x3
Z

fT1a
) 5

6x2
fX3 - 2

3
fZ3 +

x5

2x6
fX(Y2-Z2)

fT1θ ) - 1
4
fX3 +

x5

4x3
fX(Y2-Z2) -

x5

x6
fZ(X2-Y2) (I.2)

fT1ε
) - 1

4
fY3 -

x5

4x3
fY(Z2-X2) +

x5

x6
fXYZ

fT1ao
) fT1a

, fT1a(1
) -

1

x2
(fT1θ ( ifT1ε

) (I.3)

〈g1|h|fao

A fha+

A |〉 )
x2
3

(ta - te) 〈g4|h|| fhao

A fa-

A |〉 )
x2
3

(ta - te)

〈g2|h|| fha+

A fa-

A |〉 ) 2
3
te 〈g2|h||fao

A fhao

A |〉 ) 1
3
ta

〈g2|h|| fhao

A fha+

A |〉 )
x2
3

ta 〈g2|h||fao

A fa-

A |〉 ) -
x2
3

te

〈g3|h|| fha+

A fa-

A |〉 ) - 2
3
te 〈g3|h||fao

A fhao

A |〉 ) - 1
3
ta

〈g3|h|| fhao

A fha+

A |〉 ) -
x2
3

te 〈g3|h||fao

A fa-

A |〉 )
x2
3

ta
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Appendix III. Trigonal One-Electron 5d Bases of T2

and E Types

The real trigonal forms of 5d orbitals are given by

The complex trigonal 5d orbitals are related to the real ones,
eq III.1, as follows

Appendix IV. Hole Formalism for the 4f 13

Configuration

One can introduce the hole formalism and consider one
hole in the 4f shell and the 5d shell fully occupied by holes.
Then, the wave functions of the ground state are given by

where the short notationDi ) dxo

i dhxo

i dx+

i dhx+

i dx-

i dhx-

i du+

i dhu+

i

du-

i dhu-

i (i ) A, B) is used.
Let us calculate, for example, the exchange parameter

using the relationJ⊥ ) -w3 ) -〈g2|g3〉. Because both Af
B and A r B contribute equally, it is enough to consider
the CT states in which one hole is transferred from the fully
occupied 5d shell of the ion A to the 4f shell of the ion B.
In this case, one hole in the 5d shell of A remains unpaired.
This hole interacts by the intra-atomic exchange with the 4f
hole, forming the triplet (sA ) 1) and singlet (sA ) 0). At
the same time, in the adopted model, the exchange interaction
between 4f electrons is neglected, so the singlet and triplet
states arising from the 4f2 configuration of the ion B have
the same energy. This allows us to choose the wave functions

of these CT states in such a way that they are characterized
by spinsA and spin-projectionms

B. The only CT state with
sA ) 0 that is connected to both|g2〉 and|g3〉 by the transfer
is

whereDi[k] denotesDi in which a pair of the orbitalsdk
i dhk

i

is extracted, for example,Dxo

i ) dx+

i dhx+

i dx-

i dhx-

i du+

i dhu+

i du-

i

dhu-

i , Dx+

i ) dxo

i dhxo

i dx-

i dhx-

i du+

i dhu+

i du-

i dhu-

i , etc.
One finds

so the contribution of states withsA ) 0 to theJ⊥ is -âa
2/

[9(Ufd - 4Dq)]. Considering the states withsA ) 1, one can
show that they result in the termâa

2/[9(Ufd-Jfd-4Dq)] in
J⊥. Combining these two contributions, we find

This result coincides with that given by eq 14. Therefore
,we obtained the same expression forJ⊥ as in the case of
one electron. The same identity can be derived for the
parameterJ|.

Appendix V. Nonzero Matrix Elements Connecting the
Ground Manifold with the CT States of (4f15d1)A

Configuration

(Note that the symbol A is omitted in the notation of the
wave functions of CT states).

dT2a
) dZ2, dT2θ ) 1

x3
(x2dX2-Y2 - dXZ),

dT2ε
) - 1

x3
(x2dXY + dYZ), (III.1)

dEθ ) 1

x3
(dX2-Y2 + x2dXZ), dEε ) - 1

x3
(dXY - x2dYZ)

dT2xo
≡ dxo

) dT2a
, dT2x(

≡ dx(
) -

1

x2
(dT2θ ( idT2ε

),

(III.2)
dEu( ≡ du(

) -
1

x2
(dEθ ( idEε)

|g1〉 ) 2
3
| fha+

A fha+

B DADB| + 1
3
|fao

A fao

B DADB| -

x2
3

(| fha+

A fao

B DADB| + |fao

A fha+

B DADB|)

|g2〉 ) 2
3
| fha+

A fa-

B DADB| + 1
3
|fao

A fhao

B DADB| -

x2
3

(| fha+

A fhao

B DADB| + |fao

A fa-

B DADB|)

(IV.1)|g3〉 ) 2
3
|fa-

A fha+

B DADB| + 1
3
| fhao

A fao

B DADB| -

x2
3

(|fa-

A fao

B DADB| + | fhao

A fha+

B DADB|)

|g4〉 ) 2
3
|fa-

A fa-

B DADB| + 1
3
| fhao

A fhao

B DADB| -

x2
3

(|fa-

A fhao

B DADB| + | fhao

A fha-

B DADB|)

|(aoxo)
A, sA ) 0; (aoao)

B, ms
B ) 0〉 )

1

x2
(|fao

A dhxo

A fao

B fhao

B Dxo

ADB| - | fhao

A dxo

A fao

B fhao

B Dxo

ADB|) (IV.2)

〈g2|h|(aoxo)
A, sA ) 0; (aoao)

B, ms
B ) 0〉 ) - 1

3x2
âa

(IV.3)

〈(aoxo)
A, sA ) 0; (aoao)

B, ms
B ) 0|h|g2〉 ) 1

3x2
âa

J⊥ ) -
âa

2

9(Ufd - 4Dq)
+

âa
2

9(Ufd - Jfd - 4Dq)
(IV.4)

〈g1||a+x0, 00〉 ) 1
3

âa, 〈g2||a0x0, 00〉 ) 1

3x2
âa

〈g1||a0x0, 11〉 ) 1
3

âa, 〈g2||a0x0, 10〉 ) 1

3x2
âa

〈g1||a+x0, 10〉 ) - 1
3

âa, 〈g2||a+x0, 1 -1〉 ) -
x2
3

âa

〈g1||a0x+, 00〉 ) - 1
3

âe, 〈g2||a+x-, 00〉 ) -
x2
3

âe

〈g1||a0u+, 00〉 ) - 1
3

â′e, 〈g2||a+u-, 00〉 ) -
x2
3

â′e

〈g1||a+x+, 1 -1〉 ) 2
3

âe, 〈g2||a0x-, 11〉 ) -
x2
3

âe

〈g1||a0x+, 10〉 ) - 1
3

âe, 〈g2||a+x-, 10〉 )
x2
3

âe

〈g1||a+u+, 1 -1〉 ) 2
3

â′e, 〈g2||a0u-, 11〉 ) -
x2
3

â′e
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Appendix VI. Wave Functions of the Ground
Manifold for the Corner-Shared Bioctahedral Yb3+

cluster of D4h Symmetry

The two one-hole wave functions of theγ6 type are given
by

By using eq VI.1, we construct the following four states
belonging to the ground (Γ6)A X (Γ6)B manifold of theD4h

pair

IC0482382

〈g1||a0u+, 10〉 ) - 1
3
â′e, 〈g2||a+u-, 10〉 )

x2
3

â′e

〈g3||a0x0, 00〉 ) - 1

3x2
âa, 〈g4||a-x0, 00〉 ) - 1

3
âa

〈g3||a0x0, 10〉 ) 1

3x2
âa, 〈g4||a0x0, 1 -1〉 ) 1

3
âa

〈g3||a-x0, 11〉 ) -
x2
3

âa, 〈g4||a- x0, 10〉 ) - 1
3

âa

〈g3||a-x+, 00〉 )
x2
3

âe, 〈g4||a0x-, 00〉 ) 1
3
âe

〈g3||a-u+, 00〉 )
x2
3

â′e, 〈g4||a0u-, 00〉 ) 1
3
â′e

〈g3||a0x+, 1 -1〉 ) -
x2
3

âe, 〈g4||a-x-, 11〉 ) 2
3
âe

〈g3||a-x+, 10〉 )
x2
3

âe, 〈g4||a0x-, 10〉 ) - 1
3

âe

〈g3||a0u+, 1 -1〉 ) -
x2
3

â′e, 〈g4||a-u-, 11〉 ) 2
3

â′e

〈g3||a-u+, 10〉 )
x2
3

â′e, 〈g4||a0u-, 10〉 ) - 1
3

â′e

æΓ6

+ ≡ [+] ) 1

x3
(-i fhR + fhâ - ifγ),

(VI.1)
æΓ6

- ≡ [-] ) 1

x3
(-ifR - fâ + i fhγ)

|g1〉 ≡ |[+]A[+]B〉 ) 1
3
[-| fhR

A fhR
B| + | fhâ

A fhâ
B| - |fγA fγ

B| -

| fhR
A fγ

B| - |fγA fhR
B| - i(| fhR

A fhâ
B| + | fhâ

A fhR
B| + | fhâ

A fγ
B| +

|fγA fhâ
B|)]

|g2〉 ≡ |[+]A[-]B〉 ) 1
3
[-| fhR

A fR
B| - | fhâ

A fâ
B| + |fγA fhγ

B| +

| fhR
A fhγ

B| - |fγA fR
B| + i(| fhR

A fâ
B| - | fhâ

A fR
B| + | fhâ

A fhγ
B| +

|fγA fâ
B|)]
(VI.2)

|g3〉 ≡ |[-]A[+]B〉 ) 1
3
[-|fRA fhR

B| - |fâA fhâ
B| + | fhγ

A fγ
B| -

|fRA fγ
B| + | fhγ

A fhR
B| + i(-|fRA fhâ

B| + |fâA fhR
B| + |fâA fγ

B| +

| fhγ
A fhâ

B|)]

|g4〉 ≡ |[-]A[-]B〉 ) 1
3
[-|fRA fR

B| + |fâA fâ
B| - | fhγ

A fhγ
B| +

|fRA fhγ
B| + | fhγ

A fR
B| + i(|fRA fâ

B| + |fâA fR
B| - |fâA fhγ

B| - | fhγ
A fâ

B|)]
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